
Cloudflare
and RPKI at scale
Louis Poinsignon



Introduction

Network Engineer at Cloudflare in San Francisco

Open-source projects including flows and RPKI

Network data collection (BGP, flows, peering-portal)

https://blog.cloudflare.com/rpki-details/
https://blog.cloudflare.com/rpki/



How did it start?

https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies/



The Initial Story

Authority DNS route hijack in April 2018.

This affected our DNS Resolver.

The route was sent to us on a Chicago peering session.

What should we do?



The Initial Story

At the time...

150+ PoPs, 26000 BGP sessions, IP space in 5 RIRs

Just the RIPE Validator[1]

How to distribute a prefix list efficiently?

[1] Cloudflare is very grateful for the RIPE Validator s/w 



The Initial Story

July: started deploying internally GoRTR.

August: open-source release.
https://github.com/cloudflare/gortr

September → December:

● Turn up RTR sessions

● Signing prefixes

https://github.com/cloudflare/gortr%5C


Diagram



Behind the scene (until January 2019)

RIPE Validator providing list of prefixes.

Running in a Mesos cluster.

With a cronjob:
● Fetching the data
● Filtering it

(remove > /24 and > /48 and duplicates)
● Signing it
● Making it available to our edge.

https://rpki.cloudflare.com/rpki.json was born.

https://rpki.cloudflare.com/rpki.json


Effects

The question everyone asked us.

How much traffic was affected?

Many invalids. Little traffic in practice
(default or valid less specific).

Except in one place. Few gigabits per seconds displaced due to 

geographical more specific.

https://www.flickr.com/photos/thure/6287816628/



Accouting

Using flows, we see at least 30% of the traffic being valid. Very little/none 

invalid.

We use GoFlow for accounting.

Other tools compatible with flows:

pmacct and Kentik



Signing the routes



Signing the routes

IP space in 5 RIRs (no twnic/jpnic/cnnic).
Not a unified experience.

RIR Features Ease of use API

AFRINIC ⭐ ⭐ ⭐

APNIC ⭐⭐ ⭐⭐ ⭐

ARIN ⭐⭐ ⭐⭐ ⭐⭐

LACNIC ⭐ ⭐⭐⭐ ⭐

RIPE ⭐⭐⭐ ⭐⭐⭐ ⭐⭐⭐



Rankings

Features: RRDP, 2 factors, extra info, CA.

Ease of use: steps to sign a ROA, multi user.

API: functional, complete and accessible.



Comparison - AFRINIC

Hard to set up: client TLS certificate to create (BPKI) in order to do RPKI.
Buggy.
No RRDP.
No API.
No auto-renew.
Hosted CA possible.

Extensive certificate informations.



Comparison - APNIC

Two factors or client certificate.
RRDP.
Auto-renew.
Allow BGP batch signing.
(slight bugs with big amount of prefixes).
Hosted CA possible.

Draft for API:
https://www.apnic.net/manage-ip/apnic-services/ser
vices-roadmap/public-api-draft-for-members/



Comparison - ARIN

Two factors. Separate signing key.
No RRDP.
No auto-renew.
Semi-functional API (add).
Dashboard not easy to find.
Hosted CA possible.
Slow rsync update (4 times a day).

Some certificate information.



Comparison - LACNIC

No two factors. Single user.
No RRDP.
No API.
Auto-renew opt-in.
Allow BGP batch signing.
Based off RIPE.
No Hosted CA.
Some extra info (revoked, path).
Incorrect certificate encoding (BER). High turnover of certificate (few days).



Comparison - RIPE

Two factors.
RRDP.
Auto-renew.
Nice API.
Allow BGP batch signing.
No Hosted CA (theoretically).
No extra information. But history.
Incorrect certificate encoding (BER).



Automation

We automated prefixes adding on 
ARIN and RIPE with a Salt state.

Two secrets to store (API key and 
signing key).

Cannot delete or list via API for 
ARIN: very prone to mistakes if user 
wants to reduce the amount of 
ROA files.



Validator



Why making a validator?

First release of Routinator in November 2018.
We were still using RIPE Validator.

We wanted something more custom: with monitoring and RRDP.

By building it in Go:

● Many APIs and easy for concurrency

● Community doing cryptography

● Cloudflare uses Go a lot (cfssl, sidh, etc.)



Challenges

Juniper bugs: Routing Validation disabled.

Difficulties: rsync, BER encoded instead of DER, conditions in cryptography



Cloudflare’s RPKI Toolkit

Sets of libraries and tools written in Go.

Including OctoRPKI 🐙

https://blog.cloudflare.com/cloudflares-rpki-toolkit/



Cloudflare’s RPKI Toolkit

Libraries

● CER/ROA/MFT decoder

● PKI manager (exploring, validating)

● RRDP/rsync fetcher

● Validation of prefixes



Cloudflare’s RPKI Toolkit

Software

● Local validator (without RRDP/Rsync)

● API tools for a distributed version without filesystem

● OctoRPKI

● Certificate Transparency tool



OctoRPKI - Features (1/2)

● Decodes TAL/CER/ROA/MFT

● Explore via Manifest or directory.

● RRDP support (and failover to Rsync)

● Monitoring (Prometheus and JSON API which includes logs)

● Dockerizeable

● Handle stability (generate file when done)



OctoRPKI - Features (2/2)

● Full compatibility with GoRTR (including signing the JSON file)

● Server + caching options for generated file (CDN friendly)

● Configuration options

○ Disable/Enable components

○ Modes (server, one-off)

● ~5-15 minutes for a full cold-start sync



OctoRPKI - Compute footprint

OctoRPKI v1.1.3
RIPE Validator v2.25

Routinator v3.3.0



Monitoring



API
Validator



ROA list



OctoRPKI - Run it yourself

$ docker run -ti \
    -p 8080:8080 \
    -v $PWD/cache:/cache \
    -v $PWD/tals/arin.tal:/tals/arin.tal \
    cloudflare/octorpki

Container image
Adding ARIN TAL

Use cache folder 
on host

Open port 8080 on host



GoRTR

OctoRPKI does not embed a RTR server. Modular and independence!

Fully compatible with GoRTR https://github.com/cloudflare/gortr

Signs the prefix list to ensure a safe distribution of the file.

Can run natively on Juniper!

$ docker run -ti \
    -p 8082:8082 \
    -v $PWD/example.pub:/example.pub \
    cloudflare/gortr \
      -verify.key /example.pub \
      -cache https://YOUR_ROA_URL

https://github.com/cloudflare/gortr


GoRTR

Only software to support plaintext, SSH and TLS.



GoRTR without installing anything

SSH: rtr.rpki.cloudflare.com:8283  (user: rpki/pass: rpki)

and

Plaintext: rtr.rpki.cloudflare.com:8282

Just configure your router



Cloudflare’s Internal Version

Is providing:
https://rpki.cloudflare.com/rpki.json

But also a GraphQL API

...which powers a
dashboard



Dashboard



Certificate Transparency

Historical records of 
certificates.

Contains a chain (root → 
ROA).

Sent by our validator.



Other data - so how fresh are those ROAs?

RIPE regenerates 
certificates!

ARIN uses 
ten year 
expire

LACNIC 
random 
expires



Future projects or ideas

RPKI validation tester using our CDN:

● Using a /23 (/47 IPv4) valid and a /24 (/48 IPv6) invalid

Certificate encoder, ASPA.

More toolings and visualizations around RPKI (BGP collection):

● Integration in our portal peering.cloudflare.com (ask for your free access)

https://peering.cloudflare.com


Recent Leaks And
Conclusions



Summary of Amazon Route Hijack

An attacker announces Amazon Authority DNS prefixes.

Cloudflare and Google accept them in specific locations.

Cloudflare and Google DNS resolvers use this route when clients request 

the website, the attacker’s server is returned.

The server has a phishing website for the client.

Attacker gather credentials and steals Bitcoins.







Summary of Amazon Route Hijack

Amazon did not have signed routes.

Cloudflare did not do RPKI validation + route filtering

If RPKI was deployed:

Route would have been rejected because wrong origin.



Summary of Verizon Route Leak

A company has two Internet accesses: Verizon and another ISP.

The ISP has a BGP optimizer which feeds more-specific routes.

Unfortunately, the ISP sends the routes to the company which end up being 

sent to Verizon.

Verizon did not filter them and re-announces them to its peers and clients.

Cloudflare loses traffic.





Summary of Verizon Route leak

Cloudflare had signed routes.

Verizon did not filter. Many networks accepted the leak. 

Cloudflare filtering routes did not matter here.

If basic filtering was deployed:

Peering sessions would have been removed when going above prefix threshold. 

AS-Path filtering could have avoided accepting routes.

If RPKI was deployed:

Routes would have been rejected because wrong length.



What we learned

RPKI will not be the solution to everything. But in our 
stories...

Filtering solves Amazon being hijacked

Signing helps your network not being leaked



Deploy RPKI now
Because tomorrow is already too late

With filtering Without filtering



Thank you

Questions?

louis@cloudflare.com
@lpoinsig (twitter)


